
In-Storage Embedded Accelerator for Sparse Pattern Processing

Sang-Woo Jun
*
, Huy T. Nguyen

#
, Vijay Gadepally

#*
, and Arvind

*

#
MIT Lincoln Laboratory,

*
MIT Computer Science & Artificial Intelligence Laboratory

Abstract— We present a novel system architecture for

sparse pattern processing, using flash storage and an in-

storage embedded accelerator. Placing commonly used

computing kernels in direct access to a data source

achieves high performance, without increasing the

requirements for system memory. We show that the

sparse pattern matching accelerator is useful for general

sparse vector multiplication, feature matching, subgraph

matching, protein database search, and machine

learning applications. In our prototyping experiment,

one accelerator slice can outperform a 16-core system at

a fraction of the power and cost.

I. INTRODUCTION

Many data analytics of interest deal with sparse data,

including audio, video, images, and documents. Document

search or clustering algorithms often represent documents as

a bag-of-words, and many algorithms, including important

machine learning algorithms, have been designed to work

on data represented as sparse matrices and vectors.

In many cases, the size of data is too large to be

accommodated in the system memory of a single machine

[1]. At the same time, the processing requirement of the

problems is large enough that processing itself can become

the bottleneck. The traditional way to overcome this

situation is to either use a cluster of machines so that data

can be accommodated in the collective main (DRAM)

memory, and computation can be distributed across the

machines in the cluster [2]. Scaling out, however, increases

cost and reduces efficiency. Recently, new server systems

can accommodate large amounts of memory and multiple

CPU sockets, enabling more memory and compute capacity

per platform. A quad-socket system with 1.5 TB memory

and four 12-core CPUs (48 cores total) can be put together

for $27k, or with high premium 18-core CPUs for $49k.

This is still a costly solution. The cost increases with

memory and very steeply with number of cores in the

system.

One alternative solution is to use a fast flash-based

secondary storage such as Solid-State Drives (SSDs) for the

main data store instead of a large memory, accepting that

most of data access will happen on the secondary storage,

and optimize for it. Industry has been heading this way with

recent advances such as Non-Volatile Memory Express

(NVMe) devices, making this type of solution more

attractive.

On the computing front, using application-specific

hardware accelerators [3] can offer one to three orders of

magnitude better performance with less power consumption

compared to CPU cores performing the same task. Many

accelerator devices are packaged as an independent system

component that can be plugged into a high-speed bus such

as PCIe to interface with CPUs and system memory.

In this paper, we demonstrate a novel system

architecture called In-Storage Computing that integrates the

storage and computing solutions together to reduce memory

size and CPU workload [4]. An illustration is shown in

Figure 1. The Field-Programmable Gate Array (FPGA) is

used as the application-specific accelerator. In this

architecture, it takes on two additional roles: to interface

directly with storage, and to provide dedicated high

bandwidth network for scalability.

In high-volume data processing, besides the number

crunching tasks, there are many other activities such as

handling data structures, indexing, pointer arithmetic, file

operation, network operation, etc., that also demand

significant CPU resources. Most could be off-loaded to very

efficient application-specific logic in the FPGA.

Sparse pattern processing is one class of applications

that requires complex data handling and does not lend itself

to the pipelined SIMD vector processing units in the CPU.

This is one good candidate for acceleration on our in-storage

computing architecture. Our particular application is

document search, which can be described as: Given a

document with one set of prominent words, search for others

that may cover similar topic(s) or sentiment(s). The words

are sparse in vocabulary space, hence, sparse pattern

processing. The operations in sparse pattern processing can

be extended to natural language processing, bioinformatics,

subgraph matching, machine learning, and graph processing.

[5][6][7]. A recent effort, the GraphBLAS [8], aims to

standardize some of these computational kernels in order to

support the development of hardware-acceleration [9].

A well-designed accelerator could benefit many fields.

We will show that our baseline accelerator outperforms a

16-core large memory server system, and matches a 24-core

 This work is sponsored by the Assistant Secretary of Defense for
Research and Engineering under Air Force Contract number FA8721-05-C-

0002. Opinions, interpretations, conclusions and recommendations are

those of the author and are not necessarily endorsed by the United States
Government.

Figure 1: In-Storage Computing Architecture

system under certain conditions, using only 2/3 power. An

optimized version could match a 48-core system at ¼ power

and cost.

The paper is organized as follows. Section II describes

sparse pattern matching using document search as an

example. Section III presents some important applications

that could benefit from accelerated sparse pattern matching.

Section IV introduces our architecture in detail. Section V

describes implementation details of the prototype system

and its performance measurements. Sections VI and VII

conclude with discussions and summary.

II. SPARSE PATTERN MATCHING

Many important types of information can be naturally

represented in a sparse manner, and many important

applications deal with data organized into a sparse

representation, such as sparse vector or matrices. A high-

performance platform for processing sparse patterns can be

a useful tool for solving many problems. In this section, we

describe sparse pattern matching using one of its key

applications, document matching.

A. Document Matching

The objective of document matching is to find document

candidate(s) that match best to a query document

[10][11][12]. Documents that discuss similar topics would

use similar vocabulary at high level of occurrences. The

topics can be abstracted out into mathematical models based

on the words, their frequencies, and with more

sophistication, the ordering and grouping of the word

appearances. Example uses are in natural language

understanding, relationship extraction, sentiment analysis,

topic segmentation, information retrieval, predictive

analysis, and bioinformatics.

A simple representation of a document search

application is shown in Figure 2. Documents A and B would

be preprocessed to extract words with occurrences above

some set threshold. The vocabulary set is the superset of all

prominent words in all documents in the collection. In the

UCI Machine Learning Repository [13], the collection of

NY Times articles contains around 300,000 documents with

about 100,000,000 words and a prominent vocabulary set of

about 100,000. The Enron email collection has almost

40,000 emails with about 28,000 prominent words.

B. Comparison metric: Cosine similarity

Each document can be represented as an N-dimensional

vector, where N is the size of the bag-of-words. In the above

example, the Document-A vector is stored as a sparse vector

of 4 non-zero elements. Document-B vector also happens to

have 4 non-zero elements although this could vary widely

depending the number of prominent words in the document

above the set threshold.

One simple and effective method for comparing high-

dimensional vectors is the Cosine similarity metric, which is

defined as follows (the top computes the correlation, and the

bottom performs the normalization):

As illustrated in Figure 3, the vectors that are closely

aligned would result in large Cosine metric.

 The normalization in the above equation can be pre-

computed for each vector. Let’s now focus on the numerator,

which computes the correlation, or dot product, of vectors A

and B. This computation is illustrated in Figure 4 for both

sparse and full formats. The term-wise multiplication of Ai

and Bi creates partial products PPi for each term, but due to

sparsity, only terms PP1 and PP7 need to be created. The

correlation score is the summation of these partial products.

 The match processing between a document-A against the

whole collection can be formulated as a matrix-vector

multiplication as illustrated in Figure 5, where both the

matrix and the vector are sparse. If the queries are batched

together, for example, [document-AA, document-AB, …],

the problem can be formulated as sparse matrix-matrix

multiplication.

Figure 2: Document Matching

Figure 3: Cosine as Alignment Metric

Figure 5: Document Search and Classification

Figure 4: Pattern Matching as Sparse Vector

Multiplication

 There are many opportunities for parallelizing the

processing. As illustrated in Figure 5, one approach is to

partition the database matrix into K subsets (separated by

dividing lines) and compute in parallel on K accelerator

kernels. If a batch of L queries is issued, the work can be

performed in parallel on K*L kernels. Analysis is required to

determine the value of K and L parameters to match

optimally the accelerator computing capability, data

bandwidth, and local working storage.

III. OTHER APPLICATIONS

A. Subgraph Matching

Document matching could be extended into the graph

processing domain by considering subgraphs to be

documents, and conducting a search for subgraphs that

contain similar vertices, as illustrated in Figure 6. Each edge

is mapped into a “word” that contains the labels of its two

vertices, and subgraphs can have different number of edges.

The labeling and partitioning into subgraphs depends on the

application context, our focus here is on the acceleration of

subgraphs matching.

Each edge traversed in the graph corresponds to a word

match in the document comparison, or equivalently, a non-

zero partial product.

B. Feature Matching in Machine Learning

Machine learning algorithms train their classifiers by

churning through massive data to evaluate “feature scores”,

and attempt to optimize an objective function that aligns the

classifications to desired outcomes. This involves adjusting

the coefficients and repeatedly going through the evaluation

process until the accuracy is deemed acceptable.

For example, a facial recognition application would

operate on features extracted from facial images. A feature

vector corresponds to a document, and the training process

involves many rounds of matching documents against

classifier candidates, not too different from scenario

depicted in Figure 5.

Operation on sparse features further enables efficient

evaluation of neural networks. Most approaches based on

neural nets require a large training dataset and intense

number crunching. If these requirements can be met for an

application in a low-power and portable form factor, the

training of neural networks could take place in the field for a

variety of different applications.

C. Bioinformatics

High dimensional search using a bag-of-words

representation is also useful in the field of bioinformatics.

For example, researchers who discovered new protein

sequences use protein search tools such as BLAST [14] to

find previously discovered and annotated proteins in order

to guess the genealogy and function of the newly discovered

protein. Since performing an optimal search algorithm such

as Smith-Waterman on the entire annotated protein database

is expensive, each protein sequence in the database is pre-

processed into a more easily searchable format, such as bag-

of-words. The goal of this pre-processed format is not to

find the most similar reference sequence by itself, but rather

to determine a smaller set of reference sequences that are

statistically likely to be similar to the query. This reduces

the search space of the optimal algorithm.

We have experimented with this approach, by first pre-

process each protein sequence to generate a sparse bag-of-

words representation of all 3-mers, and then perform a

global search. The sparse metadata extracted from the

UniProt TrEMBL dataset [15] is reduced from 35 GBs to

approximately 4 GBs, and requires only 2 seconds in our

flash-based prototype to be traversed in its entirety.

 Figure 7 shows how an example protein sequence can

be organized into a bag-of-words representation. Once all

reference protein sequences in the dataset are processed and

encoded in such a sparse format, the same document search

kernel can be used to quickly search for reference proteins

statistically likely to be similar to the query.

IV. ACCELERATOR DESIGN

As part of the design process, we performed analysis and

experiments to gain insights into the application and identify

bottlenecks. Decomposing the application into key functions

and performing benchmarking, we can tell if performance is

bounded by data bandwidth or computing capability.

For document matching, computing the Cosine

similarity metric is the key function and specialized

hardware, in the form of sparse vector multiplication, can

have a significant effect on the performance. This

application can also use multiple copies of this accelerator

in parallel.

Fast data access is almost always required to keep the

computing kernels busy. Each vector multiplication requires

a new vector to be delivered to the kernel. On a system with

large memory, all vectors can be loaded and kept in memory

at first use so that subsequent accesses are fast. But on

smaller system, secondary storage will need to be accessed,

Figure 6: Subgraph Matching

Figure 7: Organizing a Protein Sequence into Bag-of-Words

thus, limiting the data bandwidth to the kernels. In the

current technology, there is a 25X to 100X difference in

system memory bandwidth and the secondary storage

bandwidth.

Whereas a CPU-based system with high memory

bandwidth is likely to be compute bound, our accelerator

using flash would be bandwidth bound. It is, therefore,

critical that we use data structures that are as bandwidth

efficient as possible.

A. Data Structure

Our document encoding schema is illustrated in Figure 8.

Rather than storing the words, we are storing the index into

the bag-of-words. This requires an indexing step, but allows

for much flexibility in abstraction, for example, “words” can

be phrases, strings, or even other features (images) of the

document, etc.

To make effective use of storage bandwidth and

computation, we encoded the vectors, or pattern datasets,

into binary format as shown in Figure 9. Each data item is

32 bits wide. Pending on a flag bit, each data item can either

be a pattern identifier, i.e., “Document A”, or a key/value

pair for each word in the document. Comparing to the

original data format from UCI repository [18], which

replicates the documentID with each wordID and storing

one word per line of 256 bytes, this format uses only one 4-

byte documentID followed words encoded in 4 bytes each.

This compact format significantly saves storage bandwidth,

considering each document contains about 60 prominent

words.

B. Architecture

A reference software implementation was developed to

provide benchmark functionality and a framework for later

integration of the accelerator. The implementation is

parameterized so the user can choose the number of worker

threads to spawn. Each worker is given a contiguous

partition of the dataset to work on, along with its own copy

of the query pattern. After finishing execution, each thread

reports its top pattern with the largest cosine metric. The

main thread then selects the global nearest pattern from the

small list of local patterns.

In the FPGA-accelerated design, the FPGA platform is

inserted between the flash storage and the host server. A

software scaffolding infrastructure [4] shown in Figure 13 is

provided for rapid development of multiple accelerator

kernels. Since most of actual computation is offloaded into

the FPGA, the host software is only responsible for

managing data organization and routing, and almost no

actual computation. As a result, a very small processor

could be used and still make full use of storage device

bandwidth.

When the host software sends a read or write command

to the storage device, the data transfer is default to be

between storage to/from host server memory. Optionally, it

can specify source and destination to be one of the various

accelerator kernels on the FPGA. The host software also

provides an additional interface for sending and receiving

sideband information to each kernel.

Figure 10 shows the interaction of host software,

accelerator, and flash storage. Each FPGA accelerator

kernel implements the same interface, and can be accessed

through 4 ports: dataIn (512 bits), commandIn (128 bits),

resultToMemory (128 bits), and dataToStorage (512 bits).

Data read from flash storage is streamed through dataIn, and

the host software sends additional information such as

commands via the sideband port commandIn. As the

accelerator performs computation, it can send data that

needs to be stored to flash via dataToStorage, or to host

software via resultsToMemory. The accelerator can send

data over these two ports at any time during computation.

The host software is responsible for managing the ports, for

example, maintaining a list of free pages that dataToStorage

uses.

An architectural view of the sparse pattern matching

kernel is illustrated in Figure 11. It consists of a query

memory, accessed through the sideband datapath, and a

chain of computation modules for calculating the cosine

similarity between the query and data from flash storage.

Multiple kernels are implemented in the system in order to

make full use of the flash storage bandwidth. Each kernel

receives its own data routed from flash storage as controlled

by the host software, which sends pages in round-robin

fashion for best use of flash bandwidth and maximizing

accelerator performance. Data pages from flash do not

Figure 8: Document Encoding Schema

Figure 9: Data Format
Figure 10: Accelerator Interface

necessarily arrive in order, which necessitates re-ordering

and other low-level coordination activities that take place in

the flash storage interface logic block [4].

 In the matching of the two sparse encoded vectors, the

accelerator kernel uses two pointers to query memory and

data from flash that has been routed to block RAM as

illustrated in Figure 12. These pointers track the key/value

pair being processed. If the keys in both memories match,

appropriate processing can take place. Otherwise, one of the

pointers needs to be incremented depending on which is

bigger. Unlike the data pointer, which is always increasing

because the data is streaming in from flash, the query

pointer needs to be “rewound” when the end of a vector is

reached. But if we were to only load query data only after

we knew no rewinding is required, we would waste valuable

cycles and not be keeping the query memory busy. As a

solution, a prefetch predictor has been added to the query

memory block to queue prefetched values into the

comparison unit in Figure 12. If it is determined that

prefetched values are not needed (Rewind), they are flushed

by the dequeuing logic.

V. IMPLEMENTATION & RESULTS

A. System description

Our application was implemented on a single-node setup

of MIT’s BlueDBM system [10]. The single-node

BlueDBM system consists of a 24-core Xeon server and a

BlueDBM storage device, which is a pair of a Xilinx VC707

FPGA development board and custom flash modules with 1

TB capacity. The flash device is capable of 2 GB/sec

throughput. A host server also includes 50 GBs of DRAM.

The BlueDBM device and host server are connected via a

Gen2 x8 PCIe link. Figure 13 highlights one “accelerator

slice” on a server computer and the software infrastructure

for integrating the accelerator.

Eight accelerator cores were used to fully saturate flash

bandwidth. Each accelerator was given 8 KBs of query

memory on the on-chip block RAM. The 8-KB size allows

for up to 2K non-zero elements in the sparse query vector.

The size of the query memory could be made larger and

more accelerator cores could be used, but this was more

than adequate for our example application.

We used UCI’s bag-of-words dataset [13] as the

example dataset. The UCI dataset processed multiple

document collections including Pubmed, and created bag-

of-words databases of each collection. Each database

consists of a vocabulary file that maps words to wordIDs,

and a doc file that contains {documentID, wordID,

wordCount} tuples. For effective use of disk and memory

bandwidth, we encoded each dataset in the binary format

described earlier in Figure 9. Since the UCI dataset is fairly

small, we developed a data synthesizer that generates

permutations to create datasets of 100 GBs or more for our

experiments. The synthesizer permuted documents in the

dataset by adding and removing random words, and

assigning random word count values to some words.

B. Results

The document matching performance was averaged over

an interval of 10 seconds for several system configurations:

(1) Data on hard disk, (2) Data on “RAM-Disk”, (3) Data

stored in memory, and (4) BlueDBM with data in flash.

Configuration (2) bypasses the mechanical operation of

the disk but still requires the computer operating system to

perform file operations, which approximates the

performance upper bound with SSD devices. Configuration

(3) corresponds to the new trend of high-end in-memory

database processing enabled by recent increase in computer

memory sizes and substantially many more CPU cores

available to take advantage of the large memory working

set. Configuration (4) off-loads most operation to its FPGA

accelerator, thus, places minimum requires on CPU and

memory. The BlueDBM flash modules provide affordable

large storage with high transfer rate to keep the accelerator

operating at full throttle.

Figure 12: Prefetching of Query

Figure 11: Sparse Matching Accelerator Architecture

Figure 13: BlueDBM System

Table 1: Document Matching Rate

Number

of CPU

threads

CPU -

Matlab
CPU – C++ BlueDBM

with 8

compara
tors

In

memory
Data in

hard drive

Data in

file buffer

Data in

memory

1 0.31 0.31 (M) 0.88 (M) 0.94 (M) NA

2 0.31 0.38 1.56 1.73

10.35 (M)

4 0.34 0.41 2.68 3.35

8 0.44 4.15 6.64

16 0.46 5.84 9.76

24 0.6 0.5 6.43 13.17

Table 1 shows millions of documents matched per

second for the various configurations, scaling from 1 CPU

threads to 24 threads. A graphical depiction is given in

Figure 14. Configuration (1) with hard disk is clearly limited

by the disk bandwidth. Configuration (2) scales up nicely,

but eventually runs into limitation by file processing

functions within the operating system, and peaks at 6

million docs/sec. This could be viewed as the upper bound

for storage solution with RAIDed SSDs.

Configuration (3) benefits from its direct access to data

in memory, achieving the highest rate of 13 million

docs/sec. In real-life setting, the computer would need to

read data from secondary storage into memory at least once,

so performance would be somewhere in between

configurations (2) and (3).

Configuration (4) reaches its peak at 10 million, limited

by the bandwidth of BlueDBM flash modules. This is

slightly lower than configuration (3), but almost twice

configuration (2).

Note that configuration (4) achieves 10 million docs/sec

with only 2 CPU threads, leaving the rest available for other

functions. This also suggests that a much smaller CPU, such

as those embedded in the FPGA could be used, hence, an

interesting concept of shrinking and folding the host into the

accelerator itself!

Figure 14: Document Processed vs CPU Threads

The power measurements are given in Table 2, ranging

from 90 Watts idle to 205 Watts maximum by configuration

(3). As labeled in Figure 14, configuration (4) draws nearly

40% less power - only 120 Watts while delivering a slight

reduction in processing rate. This solution is clearly more

power efficient than configuration (2) which draws more

power but delivers much less processing.

Table 2: Power Dissipation

Number of

CPU

threads

CPU – C++ BlueDBM
with 8

comparators
Data in

hard drive

Data in

memory

1 120 114 NA

2 110 134

120 W

(idle 90W)

4 100 145

8 123 160

16 112 164

24 126 205

VI. DISCUSSION

A. Scalability & Cost

The performance of BlueDBM accelerator is bounded by

the bandwidth between the accelerator kernels and the flash

storage. With 8 kernels processing 10 million docs/sec, the

sustaining data rate was measured to be about 2 GB/sec. If

the same volume of data could support more processing,

such as when queries are issued in batched, then more

kernels could be added to the accelerator. As depicted in

Table 3, the FPGA could easily provide 20 kernels to churn

through 27 million docs/sec if queries are issued in batch of

3. Alternately, this performance could also be achieved for

single query case with an increase in flash storage

bandwidth to 6 GB/sec, by either adding more parallelism to

BlueDBM flash modules or upgrading the architecture to

use PCIe-based modules presently available.

Table 3: Accelerator Scalability

Kernels in FPGA Million Docs / sec Flash IO (GB/s)

8 10.35 ~2

20 27 est. 5.4 est.

The CPU in-memory processing, in contrast, is not

bandwidth but rather processing limited. Using CPU with

more cores would increase performance, of course, at a

steep premium. Figure 15 projects that with 48-cores, a

server system could achieve 27 million docs/sec. With

today’s technology, it is not possible to obtain a 48-core

system in a dual-CPU setting, but a quad-CPU platform can

meet this requirement with 4 12-core CPUs.

A quad-CPU 48-core system with ~1.5 TB of memory

can be obtained from Colfax for $27k, with approximate

break down of $10k for memory, $7k for platform and

storage, and $10k for four mid-range 12-core CPUs ($32k

for four high-end 18-core CPUs). In contrast, a FPGA-based

accelerator slice including flash modules can be built from

commercial components for less than $6k.

Our accelerator could be implemented in two ways: (1)

with flash modules directly plugged into a FPGA card as in

BlueDBM hardware, or (2) allowing the flash modules to be

off-board but maintaining a tight interaction over PCIe, such

as the upgraded version using NVMe flash devices. The first

approach requires less PCIe slots on the platform and

provides better dedicated data bandwidth, whereas the

second allows for more scalability on large platform and

possibly easier upgrade with latest technology.

B. Power Optimization

Figure 15 captures performance and power dissipation

for configurations 3 and 4 discussed earlier. The solid red

curve depicts CPU in-memory processing, and the solid

green curve for BlueDBM in-storage processing. The dotted

curves project the trend out to the capability of a slightly

modified BlueDBM system that could be put together with

today’s technology as discussed in Table 3.

Figure 15: Projection to Technology Generations

The blue curve shows an interesting variant of

BlueDBM where the host CPU is downsized and absorbed

into the accelerator itself, i.e., the host-side 2-thread

software now run on the embedded CPU within the FPGA.

This presents a solution for extreme Size, Weight, and

Power (SWaP) applications. The high density ratio of flash

versus computer memory, and simplification in power

conditioning circuitries and cooling, etc., would enable a

compact implementation suitable for portable use cases.

The embedded CPU solution would draw only 10 Watts

at idle rather than 90 Watts as in the full-up design, At the

10 million doc/sec performance point, the power dissipation

is less than 50 Watts, and 27 million docs/sec requires only

90 Watts. This compact implementation would be about 3.8

times more power efficient than CPU in-memory

processing.

C. Sparse Multiplications Performance

Earlier in Section II, the sparse pattern matching

problem processing was formulated as a multiplication of a

sparse vector by a sparse vector in Figure 4. This allows us

to project our performance to a generic metric of partial

products per second, where a partial product is produced

only when its two multiplicands are non-zeros, thus,

resulting in a meaningful output.

Our processing of 8.2 million documents with 483

million words generates 11 million partial products in about

0.8 seconds. This yields a performance of 13 million partial

products /sec for sparse vector multiplication. The sparsity

of the data is characterized by the number of “non-trivial”

words out of 141,000 vocabulary set. On average, a

document contains about 60 such words, hence, a sparsity of

60/141,000 = 0.04%.

We could notionally attempt to compare our partial

product processing rate to Graphulo server-side sparse

matrix multiplication [16], keeping in mind 1) our results

are immediately consumed – no need for saving back to

database, and 2) the two datasets even if close in sparsity

level, will have different number of partial products due to

the actual distribution of non-zero terms. The data in the

report had 16 non-zeros per vector, and for a vector of size

2
17

 = 131,072 ~141,000, the sparsity comes out to be 0.01%,

not too far from our application parameter.

Graphulo server-side multiplication peaks at about

300,000 partial products /sec per pair of CPU cores,

attributed to architecture of the Tablet server. Assuming

optimistic linear scaling with CPU cores, it would take a

system with 43 CPU cores to match one BlueDBM

accelerator card.

VII. SUMMARY

Sparse pattern processing is an important component that

can be used in many applications dealing with a great

amount of data, including text analysis, bioinformatics and

machine learning. In this paper, we have presented a novel

system architecture that uses high performance storage and

in-storage accelerators for sparse pattern processing, and

demonstrated its validity using a prototype implementation.

Sparse pattern matching techniques such as those

described in the article have wide applicability to a variety

of applications. For example, the subgraph-matching

problem [17] is important in biological networks, event

recognition and community detection. Other applications

such as topic modeling [18], centrality [19], and graph

traversal are also amenable to sparse processing techniques

[5].

Our prototype accelerator streaming data from flash

storage was able to outperform a 16-core multithreaded

software implementation with all of the data stored in

DRAM, while consuming much less power. A cluster of

machines with such accelerators could deliver comparable

performance compared to a larger conventional cluster,

while costing much less to purchase and operate. The

proposed architecture could be a desirable alternative to

conventional computer architectures including cloud

services and low-power field applications.

There are many directions for future work. First, we

would like to explore the application of in-storage

embedded accelerators in a cloud [20][21] or

supercomputing setting. Our proposed system would be an

ideal candidate to perform analysis of enterprise and

research problems in such environments. We are also

currently developing GraphBLAS compliant operations in

our system in order to perform common graph and sparse

linear algebra problems such as one proposed in [22]. We

would also like to investigate how to integrate our system

into more general data management solutions such as the

BigDAWG polystore system [23].

REFERENCES

[1] Dean, Jeffrey, and Sanjay Ghemawat. "MapReduce: simplified data
processing on large clusters." Communications of the ACM 51, no. 1
(2008): 107-113.

[2] Zaharia, Matei, Mosharaf Chowdhury, Michael J. Franklin, Scott
Shenker, and Ion Stoica. "Spark: Cluster Computing with Working
Sets." HotCloud 10 (2010): 10-10.

[3] Huy Nguyen, James Haupt, Michael Eskowitz, Birol Bekirov,
Jonathan Scalera, Thomas Anderson, Michael Vai, and Kenneth
Teitelbaum, “High-Performance FPGA-Based QR Decomposition,”
High Performance Embedded Computing Workshop, 2005.

[4] Jun, Sang-Woo, Ming Liu, Sungjin Lee, Jamey Hicks, John Ankcorn,
Myron King, and Shuotao Xu. "Bluedbm: an appliance for big data
analytics." InComputer Architecture (ISCA), 2015 ACM/IEEE 42nd
Annual International Symposium on, pp. 1-13. IEEE, 2015.

[5] Gadepally, Vijay, Jake Bolewski, Dan Hook, Dylan Hutchison, Ben
Miller, and Jeremy Kepner. "Graphulo: Linear algebra graph kernels
for NoSQL databases." In Parallel and Distributed Processing
Symposium Workshop (IPDPSW), 2015 IEEE International, pp. 822-
830. IEEE, 2015.

[6] Eggert, Julian, and Edgar Körner. "Sparse coding and NMF."
In Neural Networks, 2004. Proceedings. 2004 IEEE International
Joint Conference on, vol. 4, pp. 2529-2533. IEEE, 2004.

[7] Smola, Alex J., and Bernhard Schölkopf. "Sparse greedy matrix
approximation for machine learning." (2000).

[8] http://graphblas.org/

[9] Bader, David, Aydın Buluç, John Gilbert, Joseph Gonzalez, Jeremy
Kepner, and Timothy Mattson. "The Graph BLAS effort and its
implications for Exascale." In SIAM Workshop on Exascale Applied
Mathematics Challenges and Opportunities (EX14). 2014

[10] Mimno, David, and Andrew McCallum. "Expertise modeling for
matching papers with reviewers." In Proceedings of the 13th ACM
SIGKDD international conference on Knowledge discovery and data
mining, pp. 500-509. ACM, 2007.

[11] Gavin, Brendan, Vijay Gadepally, and Jeremy Kepner. "Large
Enforced Sparse Non-Negative Matrix Factorization." In Parallel and
Distributed Processing Symposium Workshop (IPDPSW), 2016 IEEE
International, IEEE, 2016.

[12] Steinbach, Michael, George Karypis, and Vipin Kumar. "A
comparison of document clustering techniques." In KDD workshop on
text mining, vol. 400, no. 1, pp. 525-526. 2000.

[13] Lichman, M. (2013). UCI Machine Learning Repository
[http://archive.ics.uci.edu/ml]. Irvine, CA: University of California,
School of Information and Computer Science

[14] Altschul, Stephen; Gish, Warren; Miller, Webb; Myers, Eugene;
Lipman, David (1990). "Basic local alignment search tool". Journal of
Molecular Biology 215 (3): 403–410.

[15] Bairoch A, and Apweiler R., The Swiss-Prot protein sequence data
bank and its supplement TrEMBL in 2000, Nucl. Acids Res. 28:45-
48(2000).

[16] Hutchison, Dylan, Jeremy Kepner, Vijay Gadepally, and Adam
Fuchs. "Graphulo implementation of server-side sparse matrix
multiply in the Accumulo database." In High Performance Extreme
Computing Conference (HPEC), 2015 IEEE, pp. 1-7. IEEE, 2015.

[17] Sun, Zhao, Hongzhi Wang, Haixun Wang, Bin Shao, and Jianzhong
Li. "Efficient subgraph matching on billion node
graphs." Proceedings of the VLDB Endowment 5, no. 9 (2012): 788-
799.

[18] Wallach, Hanna M. "Topic modeling: beyond bag-of-words."
In Proceedings of the 23rd international conference on Machine
learning, pp. 977-984. ACM, 2006.

[19] Page, Lawrence, Sergey Brin, Rajeev Motwani, and Terry Winograd.
"The PageRank citation ranking: bringing order to the web." (1999).

[20] Johann Hauswald, Michael A. Laurenzano, Yunqi Zhang, Cheng Li,
Austin Rovinski, Arjun Khurana, Ron Dreslinski, Trevor Mudge,
Vinicius Petrucci, Lingjia Tang, and Jason Mars. Sirius: An Open
End-to-End Voice and Vision Personal Assistant and Its Implications
for Future Warehouse Scale Computers. In Proceedings of the
Twentieth International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS),
ASPLOS ’15, New York, NY, USA, 2015. ACM.

[21] Armbrust, Michael, Armando Fox, Rean Griffith, Anthony D. Joseph,
Randy Katz, Andy Konwinski, Gunho Lee et al. "A view of cloud
computing."Communications of the ACM 53, no. 4 (2010): 50-58.

[22] Dreher, Patrick, Chansup Byun, Chris Hill, Vijay Gadepally, Bradley
Kuszmaul, and Jeremy Kepner. "PageRank Pipeline Benchmark:
Proposal for a Holistic System Benchmark for Big-Data
Platforms." In Parallel and Distributed Processing Symposium
Workshop (IPDPSW), 2016 IEEE International, IEEE, 2016.

[23] Elmore, A., J. Duggan, M. Stonebraker, M. Balazinska, U.
Cetintemel, V. Gadepally, J. Heer et al. "A demonstration of the
BigDAWG polystore system." Proceedings of the VLDB
Endowment 8, no. 12 (2015): 1908-1911.

http://graphblas.org/

